Human Cell-Based Micro Electrode Array Platform for Studying Neurotoxicity

نویسندگان

  • Laura Ylä-Outinen
  • Juha Heikkilä
  • Heli Skottman
  • Riitta Suuronen
  • Riikka Äänismaa
  • Susanna Narkilahti
چکیده

At present, most of the neurotoxicological analyses are based on in vitro and in vivo models utilizing animal cells or animal models. In addition, the used in vitro models are mostly based on molecular biological end-point analyses. Thus, for neurotoxicological screening, human cell-based analysis platforms in which the functional neuronal networks responses for various neurotoxicants can be also detected real-time are highly needed. Microelectrode array (MEA) is a method which enables the measurement of functional activity of neuronal cell networks in vitro for long periods of time. Here, we utilize MEA to study the neurotoxicity of methyl mercury chloride (MeHgCl, concentrations 0.5-500 nM) to human embryonic stem cell (hESC)-derived neuronal cell networks exhibiting spontaneous electrical activity. The neuronal cell cultures were matured on MEAs into networks expressing spontaneous spike train-like activity before exposing the cells to MeHgCl for 72 h. MEA measurements were performed acutely and 24, 48, and 72 h after the onset of the exposure. Finally, exposed cells were analyzed with traditional molecular biological methods for cell proliferation, cell survival, and gene and protein expression. Our results show that 500 nM MeHgCl decreases the electrical signaling and alters the pharmacologic response of hESC-derived neuronal networks in delayed manner whereas effects can not be detected with qRT-PCR, immunostainings, or proliferation measurements. Thus, we conclude that human cell-based MEA platform is a sensitive online method for neurotoxicological screening.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible Electrode Array for Retinal Stimulation

In this Work, ITO/PET (Indium Tin Oxide / Polyethylene Terephthalate) electrode structure which provides biocompatibility, mechanical stability and flexibility is fabricated. Flexible ITO/PET implantable electrode array for a retina has been developed. The electrode array is fabricated on a thin PET/ITO substrate and is encapsulated using, SU-8, an insulating material. PET substrate and SU-8 po...

متن کامل

Stretchable microelectrode array using room-temperature liquid alloy interconnects

In this paper, we present a stretchable microelectrode array for studying cell behavior under mechanical strain. The electrode array consists of gold-plated nail-head pins (250 μm tip diameter) or tungsten micro-wires (25.4 μm in diameter) inserted into a polydimethylsiloxane (PDMS) platform (25.4 × 25.4 mm2). Stretchable interconnects to the outside were provided by fusible indium-alloy-filled...

متن کامل

Fabrication of an Electrochemical Immunosensor for Determination of Human Chorionic Gonadotropin Based on PtNPs/Cysteamine/AgNPs as an Efficient Interface

An ultrasensitive electrochemical immunosensor for the detection of tumor marker human chorionic gonadotropin (hCG) was developed with a limit of detection as low as 2 pg mL-1 in phosphate buffer. The Platinum nanoparticles (PtNPs) were electrodeposited to modify the gold surface and to increase enlarging the electrochemically active sites, resulting in the facilitation of electron exchange. Cy...

متن کامل

An efficient platform based on cupper complex-multiwalled carbon nanotube nanocomposite modified electrode for the determination of uric acid

A new voltammetric sensor for determination of uric acid (UA) by Cuppercomplex- multiwalled carbon nanotube (Cu-complex-CNT) nanocomposite modifiedcarbon paste electrode (CPE) is reported. The electrocatalytic behavior of theCu-complex-CNT nanocomposite modified CPE was studied in pH 2.0 phosphatebuffer solution by chronoamperometry (CA) and cyclic voltammetry (CV) in th...

متن کامل

Simultaneous Detection of Catecholamine Neurotrans- Mitters Utilizing a Cyclodextrin-based Micro Electrode Array

We report fabrication and preliminary testing results of an electrochemical sensor that utilizes a differently modified cyclodextrin-based micro electrode array to simultaneously detect catecholamine neurotransmitters. Individual concentrations of multiple neurotransmitters are known to have critical effects on various human behaviors and diseases; however, their simultaneous detection has been...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2010